Abstract

The concurrent release of myelin basic protein (MBP) and extrinsic proteinases from isolated myelin membranes by aqueous solvents of high ionic strength is considered circumstantial evidence of a presumptive mutual interaction in situ. The joint release of proteins and proteinases from myelin membranes of bovine brain, depending on the ionic strength of aqueous solvents, was therefore examined; 25 mM Tris buffer released an average 1.4% of total myelin protein. It was attributable to about 25 different electrophoretic bands, but no apparent MBP. However, the extract potently mediated the limited proteolysis of added MBP at pH 4.0, 5.6, and 9.0. Because of the pH and the effects of specific inhibitors, proteolysis appears to be owing to activities of cathepsin B and D, and an alkaline metalloproteinase. The subsequent extraction of myelin membranes with buffered 300 mM NaCl released an additional 20% of total myelin protein, mainly MBP. The extracts, unlike those of untreated myelin membranes, no longer cleaved MBP at pH 5.6 and 9.0, and did so only slightly at pH 4.0. The results indicate that the bulk of soluble myelin-associated proteinases is much less tightly bound than MBP. The weak binding of the former and the prevalence of lysosomal cathepsin B- and D-like activities suggest that during their isolation, myelin membranes may adsorb soluble cellular proteins of tissue homogenates. At any rate the washing of myelin membranes with dilute buffer was found to largely remove soluble proteinase activities that are otherwise associated with salt-soluble MBP of myelin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.