Abstract

A number of intermetallic compounds with the L12 structure exhibit a strange increase in the flow stress and work-hardening rate with increasing temperature. Despite the success of some model in explaining macroscopic properties, the detailed dislocation processes of model that are assumed to take place have not been observed in microscope. This work is an attempt to determine how the dislocation fine structure is related to the deformation behaviour of L12.Single crystal Ni-23Al-1Hf-0.1B(at%) was used in the present study. direction was chosen as compression axis. Samples were deformed to plastic strain of 6%, specimens were cut parallel to by spark erosion. Fined electropolishing was donein solution of 1% perchloric acid in methanol at −50°c and 30V. The g/3g diffraction condition used in weak beam observation.Fig1 shows the dislocation structure in foil. Long fairly straight screw dislocations with b=a[011] are imaged. The formation of dipoles is regarded as a characteristic and unusual feature of the dislocation structure. This indicates that annihilation is difficult at room temperature deformation. Weak beam images of superlattice dislocations are shown in fig.2 by using different reflections. The dislocation CC is long straight screw dislocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call