Abstract

In this paper, we propose a novel variant of the algorithm to improve the generalization performance for Elman neural networks (ENN). Here, the weight decay term, also called regularization, which can effectively control the value of weights excessive growth, also over-fitting phenomenon can be effectively prevented. The main contribution of this work lies in that we have conducted a rigorous theoretical analysis of the proposed approach, i.e. the weak and strong convergence results are obtained. The comparison experiments to the problems of function approximation and classification on the real-world data have been performed to verify the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.