Abstract

Schneider (Math. Nachr. 60 (1974), 167–180) has established the following result. Consider the mixed type equationin G ⊂ R2 which is a simply connected region, bounded for y > 0 by a piece-wise smooth curve Γ0 connecting the points A(0, 0) and B(1, 0), and for y < 0 by the solutions of k(y).(dy)2 + (dx)2 = 0 which meet at the point G(½, yc), such that for ,S(x, y) = F(yy) + 8λ·(k/k′)2 > 0 in Ḡ ∩ {y < 0}, “Schneider's Condition”, where F(y) = 1 + 2(k/k′)′, and such that S = S(x, y) is integrable in G2, “Frankl's Condition”. Then the Tricomi Problem (T): L[u] = f with has a weak solution u ∈ L2(Ḡ) and the Adjoint Tricomi Problem (T+): L+[w] = f with has at most one semistrong solution.In this present paper we get the above result of Schneider in a much more generalized way, so that here our uniqueness theorem and existence results include cases where S(x, y) may be negative in G2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.