Abstract
We generalise M. M. Skriganov's notion of weak admissibility for lattices to include standard lattices occurring in Diophantine approximation and algebraic number theory, and we prove estimates for the number of lattice points in sets such as aligned boxes. Our result improves on Skriganov's celebrated counting result if the box is sufficiently distorted, the lattice is not admissible, and, e.g., symplectic or orthogonal. We establish a criterion under which our error term is sharp, and we provide examples in dimensions $2$ and $3$ using continued fractions. We also establish a similar counting result for primitive lattice points, and apply the latter to the classical problem of Diophantine approximation with primitive points as studied by Chalk, Erd\H{o}s, and others. Finally, we use o-minimality to describe large classes of sets
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.