Abstract

Purpose: To characterize the reduction in normal tissue volume irradiated in a SBRT treatment plan by delivering an inhomogeneous dose to the PTV—via integrated subvolumes prescribed to increasing doses above prescription dose—instead of a homogeneous dose using helical tomotherapy. Method and Materials: Three patients were retrospectively planned using helical tomotherapy with two treatment plans: (1) homogenous plan delivering a uniform prescription dose to the PTV and (2) inhomogeneous plan delivering a non‐uniform dose to the PTV. Subvolumes were created by volumetrically contracting the PTV by 4mm resulting in three subvolumes within the PTV (PTVi, PTVii, and PTViii). Dose prescriptions to the various targets were as follows: Homogenous: PTV: 95% of volume to receive 60.0Gy; Inhomogeneous: PTViii: 20% of volume to receive 80.0Gy, PTVii: 50% of volume to receive 75.0Gy, PTVi: 50% of volume to receive 70.0Gy, PTV: 95% of volume to receive 60.0Gy. The homogenous and inhomogeneous plans were compared on the basis of normal tissue volume reductions to various dose levels assuming identical target coverage of the PTV. Results: A significant reduction in the volume of normal tissue irradiated to high doses was achieved for all patients. Average reduction of V90%, V80%, V50%, and V20% were 18, 15, 9, and 7%, respectively. It was noted that as the dose level decreases, the percent volume reduction between the homogeneous and inhomogeneous plans decreases. Conclusion: The study served to quantify the volumetric reduction of normal tissue irradiated during lungSBRT treatments with helical tomotherapy when delivering non‐uniform doses to the PTV as compared to uniform doses. Our results indicate that an inhomogeneous dose distribution generated by the creation of integrated subvolumes prescribed to higher doses within the PTV significantly reduces the volume of normal tissue irradiated, especially at higher doses (>50% of prescription dose).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.