Abstract
Lung cancer has been notorious for its lack of advance in clinical therapy, urging for effective therapeutic targets. WD repeat-containing protein 74 (WDR74) has previously been implicated in tumorigenesis, but its mechanistic functions remain not well understood. Herein, WDR74 expression was observed to be increased upon lung cancer progression from healthy normal tissues to the primary cancer and further to the metastatic cancer. Through gain- and loss-of-function approaches, we found that WDR74 regulated lung cancer cell proliferation, cell cycle progression, chemoresistance and cell aggressiveness in vitro. Moreover, a xenograft mouse model disclosed that WDR74 knockout inhibited lung cancer growth and metastasis, whereas WDR74 overexpression reciprocally enhanced these characteristics. Mechanistically, WDR74 promoted nuclear β-catenin accumulation and drove downstream Wnt-responsive genes, thus revealing that WDR74 activated the Wnt/β-catenin signaling pathway. Collectively, WDR74 inducing nuclear β-catenin accumulation and driving the downstream Wnt-responsive genes expression facilitates lung cancer growth and metastasis. WDR74 can serve as a candidate target for the prevention and treatment of lung cancer in clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.