Abstract

The early detection and timely treatment of breast cancer can save lives. Mammography is one of the most efficient approaches to screening early breast cancer. An automatic mammographic image classification method could improve the work efficiency of radiologists. Current deep learning-based methods typically use the traditional softmax loss to optimize the feature extraction part, which aims to learn the features of mammographic images. However, previous studies have shown that the feature extraction part cannot learn discriminative features from complex data using the standard softmax loss. In this paper, we design a new architecture and propose respective loss functions. Specifically, we develop a double-classifier network architecture that constrains the extracted features' distribution by changing the classifiers' decision boundaries. Then, we propose the double-classifier constraint loss function to constrain the decision boundaries so that the feature extraction part can learn discriminative features. Furthermore, by taking advantage of the architecture of two classifiers, the neural network can detect the difficult-to-classify samples. We propose a weighted double-classifier constraint method to make the feature extract part pay more attention to learning difficult-to-classify samples' features. Our proposed method can be easily applied to an existing convolutional neural network to improve mammographic image classification performance. We conducted extensive experiments to evaluate our methods on three public benchmark mammographic image datasets. The results showed that our methods outperformed many other similar methods and state-of-the-art methods on the three public medical benchmarks. Our code and weights can be found on GitHub.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.