Abstract

Safe exploration is regarded as a key priority area for reinforcement learning research. With separate reward and safety signals, it is natural to cast it as constrained reinforcement learning, where expected long-term costs of policies are constrained. However, it can be hazardous to set constraints on the expected safety signal without considering the tail of the distribution. For instance, in safety-critical domains, worst-case analysis is required to avoid disastrous results. We present a novel reinforcement learning algorithm called Worst-Case Soft Actor Critic, which extends the Soft Actor Critic algorithm with a safety critic to achieve risk control. More specifically, a certain level of conditional Value-at-Risk from the distribution is regarded as a safety measure to judge the constraint satisfaction, which guides the change of adaptive safety weights to achieve a trade-off between reward and safety. As a result, we can optimize policies under the premise that their worst-case performance satisfies the constraints. The empirical analysis shows that our algorithm attains better risk control compared to expectation-based methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.