Abstract
Real-time embedded systems in diverse application domains, such as industrial control, automotive, and aerospace, are often safety-critical systems with stringent timing constraints that place strong demands on reliability and fault tolerance. Since fault-tolerance mechanisms inevitably add performance and/or resource overheads, it is important to guarantee a system's real-time constraints despite these overheads. Control-flow checking (CFC) is an effective technique for improving embedded systems' reliability and security by online monitoring and checking of software control flow to detect runtime deviations from the control-flow graph (CFG). Software-based CFC has high runtime overhead, and it is generally not applicable to resource-constrained embedded systems with stringent timing constraints. We present techniques for partial CFC (PCFC), which aims to achieve a tradeoff between runtime overhead, which is measured in terms of increases in worst case execution time (WCET), and fault-detection coverage by selectively instrumenting a subset of basic blocks. Experimental results indicate that PCFC significantly enables reductions of the program WCET compared to full CFC at the cost of reduced fault-detection ratio, thus providing a tunable fault-tolerance technique that can be adapted by the designer to suit the needs of different applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.