Abstract

Evolutionary computation is attracting attention in the energy domain as an alternative to tackle inherent mathematical complexity of some problems related to high-dimensionality, non-linearity, non-convexity, multimodality, or discontinuity of the search space. In this context, the research community launched the 2020 ”Competition on Evolutionary Computation in the Energy Domain: Smart Grid Applications” and an associated simulation framework to evaluate the performance of state-of-the-art evolutionary algorithms solving real-world problems. The competition includes two testbeds: (1) Day-ahead energy resource management problem in smart grids under uncertain environments; and (2) Bi-level optimization of end-users’ bidding strategies in local energy markets. This paper describes the general framework of the competition, the two testbeds, and the evolutionary algorithms that participated. A special section is dedicated to the winner approach, CUMDANCauchy++, a cellular Estimation Distribution Algorithm (EDA). A thorough analysis of the results reveals that, led by CUMDANCauchy++, the top three algorithms form a block of approaches all based on cellular EDAs. Moreover, for testbed 2, in which CUMDANCauchy++ did not achieve the best performance, the winner approach is also based on EDAs. The outcomes of the competition show that CUMDANCauchy++ is an effective algorithm solving both testbeds, and EDAs emerge as an algorithm class with promising performance for solving smart grid applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.