Abstract

A W-band multiple-input multiple-output (MIMO) radar imaging system has been proposed. The $4 \times 4$ radar system that forms a 2-D virtual array operates at a center frequency of 94 GHz and bandwidth of 1 GHz with frequency-modulated continuous wave. A hybrid scheme comprising time- and frequency-division multiplexing is introduced for establishing orthogonal waveforms, where the transmit channels perform alternate transmission in pairs. The proposed scheme can efficiently extend the number of MIMO channels utilizing the existing hardware with simultaneous transmission. The design, implementation, measurements, and imaging results of the proposed radar system have been presented. The imaging performance was tested through outdoor experiments. The high-resolution performance was shown with images generated using a synthetic aperture radar. The impulse responses of all channels were measured, and the resolution was confirmed to be 0.15 m in all the channels. In addition, a human and a car at 100-m range were imaged using the proposed radar system. The polarimetric and interferometric capabilities were tested for multimode imaging with the MIMO configuration. Overall, the measurements and experimental results verified the feasibility of the proposed MIMO radar with hybrid scheme as a high-resolution multimode imaging system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.