Abstract
The diagnosis of train bearing defects plays a significant role to maintain the safety of railway transport. Among various defect detection techniques, acoustic diagnosis is capable of detecting incipient defects of a train bearing as well as being suitable for wayside monitoring. However, the wayside acoustic signal will be corrupted by the Doppler effect and surrounding heavy noise. This paper proposes a solution to overcome these two difficulties in wayside acoustic diagnosis. In the solution, a dynamically resampling method is firstly presented to reduce the Doppler effect, and then an adaptive stochastic resonance (ASR) method is proposed to enhance the defective characteristic frequency automatically by the aid of noise. The resampling method is based on a frequency variation curve extracted from the time–frequency distribution (TFD) of an acoustic signal by dynamically minimizing the local cost functions. For the ASR method, the genetic algorithm is introduced to adaptively select the optimal parameter of the multiscale noise tuning (MST)-based stochastic resonance (SR) method. The proposed wayside acoustic diagnostic scheme combines signal resampling and information enhancement, and thus is expected to be effective in wayside defective bearing detection. The experimental study verifies the effectiveness of the proposed solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.