Abstract
For real autonomous systems of differential equations with continuously differentiable right-hand sides, the problem of detecting the exact number and localization of the second-kind limit cycles on the cylinder is considered. To solve this problem in the absence of equilibria of the system on the cylinder, we have developed our previously proposed ways consisting in a sequential two-step application of the Dulac – Cherkas test or the Dulac test. Additionally, a new way has been worked out using the generalization of the Dulac – Cherkas or Dulac test at the second step, where the requirement of constant sign for divergence is replaced by the transversality condition of the curves on which the divergence vanishes. With the help of the developed ways, closed transversal curves are found that divide the cylinder into subdomains surrounding it, in each of which the system has exactly one second-kind limit cycle.The practical efficiency of the mentioned ways is demonstrated by the example of a pendulum-type system, for which, in the absence of equilibria, the existence of exactly three second-kind limit cycles on the entire phase cylinder is proved.
Highlights
For real autonomous systems of differential equations with continuously differentiable right-hand sides, the problem of detecting the exact number and localization of the second-kind limit cycles on the cylinder is considered. To solve this problem in the absence of equilibria of the system on the cylinder, we have developed our previously proposed ways consisting in a sequential two-step application of the Dulac – Cherkas test or the Dulac test
A new way has been worked out using the generalization of the Dulac – Cherkas or Dulac test at the second step, where the requirement of constant sign for divergence is replaced by the transversality condition of the curves on which the divergence vanishes
With the help of the developed ways, closed transversal curves are found that divide the cylinder into subdomains surrounding it, in each of which the system has exactly one second-kind limit cycle
Summary
Для вещественных автономных систем дифференциальных уравнений с непрерывно дифференцируемыми правыми частями рассматривается задача нахождения точного числа и локализации предельных циклов второго рода на цилиндре. В случае отсутствия точек покоя системы на цилиндре для решения указанной задачи развиваются ранее предложенные нами способы, состоящие в последовательном двухшаговом применении признака Дюлака – Черкаса или признака Дюлака. С помощью разработанных способов находятся замкнутые трансверсальные кривые, разбивающие цилиндр на подобласти, окружающие его, в каж дой из которых система имеет точно один предельный цикл второго рода. Практическая эффективность разработанного способа продемонстрирована на примере системы маятникового типа, для которой в случае отсутствия точек покоя доказано существование точно трех предельных циклов второго рода на всем фазовом цилиндре. Ключевые слова: автономная система на цилиндре, предельный цикл второго рода, 16-я проблема Д. А. Cпособы нахождения точного числа предельных циклов автономных систем на цилиндре / А. WAYS FOR DETECTION OF THE EXACT NUMBER OF LIMIT CYCLES OF AUTONOMOUS SYSTEMS ON THE CYLINDER
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.