Abstract

An autonomous monitoring and control system of unmanned surface vehicle (USV) with mobile water quality monitoring, sampling, and oxygenation functions is constructed. The control hardware and monitoring configuration software of the system is designed, respectively, which can be installed on USV and its remote control and monitoring terminal. The kinematic modeling of USV, waypoint trajectory-tracking control, distributed controller, simulation of tracking control, and verification of software and hardware design are carried out. In order to reject the system noise and external noise, a states estimation method with fully observable states is considered in the control law design. The software and hardware are also implemented to verify the effectiveness of the monitoring platform. Through setting a series of monitoring target points and monitoring parameters in the configuration software of the remote user terminal or in the APP of the mobile user terminal, the USV can realize the automatic cruise monitoring using an autonomous navigation and tracking control algorithm, and quantitative water sampling collection. The reliability of the system is verified by the experiment of the shore test station, and the waypoint trajectory tracking and sensors data are replaying in a logview GUI of MOOS-Ivp and APP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.