Abstract

Evidence suggests that the glutamatergic system plays a crucial role in the pathophysiology and treatment of depression. This study investigates the effect of WAY208466, a 5-HT6 receptor agonist exhibiting an antidepressant effect, on glutamate release from rat hippocampal nerve terminals (synaptosomes). WAY208466 inhibited the Ca2+-dependent release of glutamate that was evoked by exposing the synaptosomes to the potassium channel blocker 4-aminopyridine, and the selective 5-HT6 receptor antagonist SB258585 blocked this phenomenon. The WAY208466-mediated inhibition of glutamate release was associated with a reduction of 4-aminopyridine-induced increase in the cytosolic free Ca2+ concentration ([Ca2+]C) mediated via Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels. WAY208466 did not alter the resting synaptosomal membrane potential or 4-aminopyridine-mediated depolarization; thus, the inhibition of the Ca2+ influx could not be attributed to the decrease in synaptosomal excitability caused by 5-HT6 receptor activation. Furthermore, the effect of WAY208466 on 4-aminopyridine-evoked glutamate release was prevented by a Gi/Go-protein inhibitor pertussis toxin, adenylate cyclase inhibitor SQ22536, and a protein kinase A inhibitor H89. These results suggest that WAY208466 acts at the 5-HT6 receptors present in the hippocampal nerve terminals to suppress the Gi/Go-protein-coupled adenylate cyclase/protein kinase A cascade, which subsequently reduces the Ca2+ influx via N- and P/Q-type Ca2+ channels to inhibit the evoked glutamate release. This finding implicated a potential therapeutic role of 5-HT6 receptor agonist in the treatment of depression and other neurological diseases associated with glutamate excitotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call