Abstract

The use of high amounts of saturated fatty acids mainly obtained from tropical fats and oils gains increasing rejection from consumers. Use of liquid plant based oils, however, does not deliver necessary functionalities. In this contribution, sunflower-(SFW), bees-wax (BW), ricebran wax (RBW) and a BW-wax mixture (BW : SFWh) were investigated as a potential alternative fat phase in low-density bakery products. Since the food product matrix is composed of complex ingredients, key-functionalities (foam-stabilization, viscoelastic properties, and oil-binding) were first investigated for pure oleogels as oleofoams. It could be demonstrated that all waxes investigated were able to form oleofoams. The location of wax crystal aggregates, at the oil-air interface or in the bulk, was shown to be a significant factor regarding oil-binding and viscoelastic properties. However, it was not possible to transfer all findings made for the oleofoams to the ones made for the oleogel based sponge cakes. There, all oleogels showed improvement compared to the canola oil variant regarding oil-leaping and visual appearance (volume). Sensory evaluation attested satisfactory results for all wax-based oleogel applications. This contribution aims to deliver novel findings for wax-based oleogels as oleofoams as well as an alternative fat phase in low-density bakery products. The gathered results aim to enable a target-oriented characterization of oleogel applications and hence facilitate future use to deliver beneficial products to the market.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call