Abstract

We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.