Abstract

In this paper, the authors present a wavelet-based algorithm (Wave-SOM) to help visualize and cluster oscillatory time-series data in two-dimensional gene expression micro-arrays. Using various wavelet transformations, raw data are first de-noised by decomposing the time-series into low and high frequency wavelet coefficients. Following thresholding, the coefficients are fed as an input vector into a two-dimensional Self-Organizing-Map clustering algorithm. Transformed data are then clustered by minimizing the Euclidean (L2) distance between their corresponding fluctuation patterns. A multi-resolution analysis by Wave-SOM of expression data from the yeast Saccharomyces cerevisiae, exposed to oxidative stress and glucose-limited growth, identified 29 genes with correlated expression patterns that were mapped into 5 different nodes. The ordered clustering of yeast genes by Wave-SOM illustrates that the same set of genes (encoding ribosomal proteins) can be regulated by two different environmental stresses, oxidative stress and starvation. The algorithm provides heuristic information regarding the similarity of different genes. Using previously studied expression patterns of yeast cell-cycle and functional genes as test data sets, the authors’ algorithm outperformed five other competing programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.