Abstract
The hydrodynamics generated by a regular wave field perpendicularly superimposed to a steady current is investigated by means of laboratory experiments. The flow structure is analyzed by measuring the velocity profiles using a micro Acoustic Doppler Velocimeter. Three cases are considered: current only, waves only and waves plus current. Different bottom roughnesses are used, and the apparent roughness ks is estimated for each condition. In the presence of a small roughness, the superposition of the waves on the current causes an increase of the current velocities close to the bottom, thus generating a decrease of the apparent roughness with respect to the case of the current only. On the other hand, when a large bottom roughness is present, the waves force a decrease of the current velocity close to the bottom and, in turn, an increase of the apparent bottom roughness. Such a behavior seems related not only to the roughness but also to the flow regime (i.e., laminar or turbulent) within the wave bottom boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.