Abstract

ABSTRACT Here, we study the nature and characteristics of waves propagating in partially ionized plasmas in the weakly ionized limit, typical for the lower part of the solar atmosphere. The framework in which the properties of waves are discussed depends on the relative magnitude of collisions between particles, but also on the relative magnitude of the collisional frequencies compared to the gyro-frequency of charged particles. Our investigation shows that the weakly ionized solar atmospheric plasma can be divided into two regions, and this division occurs, roughly, at the base of the chromosphere. In the solar photosphere, the plasma is non-magnetized and the dynamics can described within the three-fluid framework, where acoustic waves associated to each species can propagate. Due to the very high concentration of neutrals, the neutral sound waves propagates with no damping, while for the other two modes the damping rate is determined by collisions with neutrals. The ion- and electron-related acoustic modes propagate with a cut-off determined by the collisional frequency of these species with neutrals. In the weakly ionized chromosphere, only electrons are magnetized, however, the strong coupling of charged particles reduces the working framework to a two-fluid model. The disassociation of charged particles creates electric currents that can influence the characteristic of waves. The propagation properties of waves with respect to the angle of propagation are studied with the help of polar diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.