Abstract

The paper presents the main steps in the development of the strongly nonlinear wave dynamics of discrete systems. The initial motivation was prompted by the challenges in the design of barriers to mitigate high-amplitude compression pulses caused by impact or explosion. But this area poses a fundamental mathematical and physical problem and should be considered as a natural step in developing strongly nonlinear wave dynamics. Strong nonlinearity results in a highly tunable behaviour and allows design of systems with properties ranging from a weakly nonlinear regime, similar to the classical case of the Fermi-Pasta-Ulam lattice, or to a non-classical case of sonic vacuum. Strongly nonlinear systems support periodic waves and one of the fascinating results was a discovery of a strongly nonlinear solitary wave in sonic vacuum (a limiting case of a periodic wave) with properties very different from the Korteweg de Vries solitary wave. Shock-like oscillating and monotonous stationary stress waves can also be supported if the system is dissipative. The paper discusses the main theoretical and experimental results, focusing on travelling waves and possible future developments in the area of strongly nonlinear metamaterials.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.