Abstract

In the fast rotating gas (with the velocity typical for Iguassu gas centrifuge), three families of linear waves exist with different polarizations and law of dispersion. The energy of the waves is basically concentrated at the axis of rotation in the rarefied region. Therefore, these waves decay on the distance comparable with the wavelength. There is only one type of waves propagating strictly along the axis of rotation with the law of dispersion similar to ordinary acoustic waves. These waves are interested for the physics of gas centrifuges. The energy density of these waves concentrates at the wall of the rotor. These waves have weak damping due to the molecular viscosity and heat conductivity. The damping coefficient is determined for this type of waves by numerical calculations. Analytical approximations for the damping coefficient are defined as well. At the parameters typical for the Iguassu centrifuge, the damping is defined by interaction of the waves with the rotor wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.