Abstract

This paper provides an analysis of magneto-sonic eigenwaves travelling in magnetic plasma structures based on the Chew-Goldberger-Low approximation, for which the plasma kinetic pressure is different along and across the magnetic field. The anisotropy does not lead to the emergence of new modes. The dependence of phase velocities of the waves, trapped by a single magnetic surface, on the pressure anisotropy is investigated. For a magnetic slab with field-free surroundings, the dispersion relations for the eigenwaves are obtained. The pressure anisotropy may change dispersion relations of such modes significantly. In particular, backward waves are possible in the case of strong anisotropy. The dependences of the thresholds for the mirror and hose instabilities on the system parameters are obtained. In particular, hose and mirror instabilities of such waves are absent for some wave number regions. The results are used to obtain the eigenwave characteristics in coronal loops and chromospheric flux tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.