Abstract

AbstractThis paper describes the characteristics of small‐amplitude waves generated by a sinusoidally oscillating, inclined paddle‐type wavemaker operating in a constant‐depth channel. Two‐dimensional, linearized potential flow is assumed. A semi‐analytical method, the boundary collocation method, is used to establish the relationship between wave amplitude and paddle stroke. The numerical results are compared with the numerical results of the boundary integral equation method. It is found that the boundary collocation method is simpler and more flexible to implement and faster to compute. In addition, the numerical results are in reasonably good agreement with the laboratory experimental data. For the vertical wavemaker, which is a special case of the inclined wavemaker, an analytical series solution can be found. By using the boundary collocation method and the boundary integral equation method to solve the vertical wavemaker problem and comparing the results with the analytical series solution, it is found that the boundary collocation method yields a solution which is much more accurate than that from the boundary integral equation method. Finally, the relationships between wave amplitude and paddle stroke are established for different inclinations of the paddle‐type wavemaker, based on the boundary collocation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.