Abstract

This chapter begins with the principles determining a star’s structure: hydrostatic and thermal balance, and energy generation and transport. These imply that some stars have stably stratified cores and convective envelopes, whereas other stars have convective cores and stably stratified envelopes. The convection in stars is predominantly low Mach number, but the density at the top of a convection zone can be orders of magnitude smaller than the density at the bottom. We derive the anelastic equations which can model efficient, low Mach number convection. The properties of stars can be inferred by studying the waves at their surface. Here we describe sound and internal gravity waves, both of which have been observed in the Sun or other stars. The second half of this chapter discusses two phenomena at the interface between the convective and stably stratified layers of stars. First we consider convective overshoot, the convective motions which can extend into an adjacent stably stratified fluid. This can lead to substantial mixing in the stably stratified part of stars. Then, we discuss internal gravity wave generation by convection, which can lead to wave-induced energy or momentum transport. These illustrate some important fluid dynamical problems in stellar astrophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.