Abstract
Thought experiments based on the double-slit interferometer had a crucial role to develop ideas concerning the wave-particle duality and the Bohr's complementarity principle. Ideally, a slit with a sufficiently low mass recoils due to the passage of the photon. This motion denounces the path taken by the light and suppresses any attempt to observe an interference pattern. In real life, however, available which-way information in such a setup is significantly impaired by the typical magnitudes of photons and slits, making the verification of the effect almost impossible. Here, we extend this discussion by applying similar ideas to the Mach-Zehnder interferometer. That is, we study the consequences of the beam-splitter recoil, during the passage of the photon, over the interference pattern produced by the device. Unlike the double-slit experiment, this recoil can now be encoded in the wavelength of the photon itself, which, in principle, is more easily accessed. Fortuitously, the model used to describe the interaction between the idealized beam-splitter and the photon clearly indicates that an interferometer based on Compton's effect could be build to study wave-particle duality. We follow this hint, finding realistic experimental parameters needed to observe the trade-off between wave and corpuscular behaviors in such a modified interferometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.