Abstract

An adaptive grid approach to a computational study of the scattering of a wavepacket from a repulsive Eckart barrier is described. The grids move in an arbitrary Lagrangian–Eulerian (ALE) framework and a hybrid of the moving path transform of the Schrodinger equation and the hydrodynamic equations are used for the equations of motion. Boundary grid points follow Lagrangian trajectories and interior grid points follow non-Lagrangian paths. For the hydrodynamic equations the interior grid points are equally spaced between the evolving Lagrangian boundaries. For the moving path transform of the Schrodinger equation interior grid distribution is determined by the principle of equidistribution, and by using a grid smoothing technique these grid points trace a path that continuously adapts to reflect the dynamics of the wavepacket. The moving grid technique is robust and allows accurate computations to be obtained with a small number of grid points for wavepacket propagation times exceeding 5 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.