Abstract

Expressions for the singular flux operator eigenfunctions and eigenvalues are given in terms of the Dirac delta-function representable as a localized Gaussian wavepacket. This functional form enables computation of the cumulative reaction probability N(E) from the wavepacket time-correlation functions. The Gaussian based form of the flux eigenfunctions, which is not tied to a finite basis of a quantum-mechanical calculation, is particularly useful for approximate calculation of N(E) with the trajectory based wavepacket propagation techniques. Numerical illustration is given for the Eckart barrier using the conventional quantum-mechanical propagation and the quantum trajectory dynamics with the approximate quantum potential. N(E) converges with respect to the Gaussian width parameter, and the convergence is faster at low energy. The approximate trajectory calculation overestimates tunneling in the low energy regime, but gives a significant improvement over the parabolic estimate of the tunneling probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.