Abstract

Being capable of enhancing the flexibility and observing ability of synthetic aperture radar (SAR), squint mode is one of the most essential operating modes in SAR applications. However, processing of highly squinted SAR data is usually a challenging task attributed to the spatial-variant range cell migration over a long aperture. The Omega-k algorithm is generally accepted as an ideal solution to this problem. In this paper, we focus on using the wavenumber-domain approach for highly squinted unmanned aerial vehicle (UAV) SAR imagery. A squinted phase gradient autofocus (SPGA) algorithm is proposed to overcome the severe motion errors, including phase and nonsystematic errors. Herein, the inconsistence of phase error and range error in the squinted wavenumber-domain imaging is first presented, which reveals that even the motion error introduces very small phase error, it causes considerable range error due to the Stolt mapping. Based on this, two schemes of SPGA-based motion compensation are developed according to the severity of motion error. By adapting the advantages of weighted phase gradient autofocus and quality phase gradient autofocus, the robustness of SPGA is ensured. Real measured data sets are used to validate the proposed approach for highly squinted UAV-SAR imagery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call