Abstract
Deconvolution of aeroacoustic data acquired with microphone phased arrays is a computationally challenging task for distributed sources with arbitrary coherence. A new technique for performing such deconvolution is proposed. This technique relies on analysis of the array data in the wavenumber–frequency domain, allowing for fast convolution and reduced storage requirements when compared to traditional coherent deconvolution. A positive semidefinite constraint for the iterative deconvolution procedure is implemented and shows improved behavior in terms of quantifiable convergence metrics when compared to a standalone covariance inequality constraint. A series of simulations validates the method׳s ability to resolve coherence and phase angle relationships between partially coherent sources, as well as determines convergence criteria for deconvolution analysis. Simulations for point sources near the microphone phased array show potential for handling such data in the wavenumber–frequency domain. In particular, a physics-based integration boundary calculation is described, and can successfully isolate sources and track the appropriate integration bounds with and without the presence of flow. Magnitude and phase relationships between multiple sources are successfully extracted. Limitations of the deconvolution technique are determined from the simulations, particularly in the context of a simulated acoustic field in a closed test section wind tunnel with strong boundary layer contamination. A final application to a trailing edge noise experiment conducted in an open-jet wind tunnel matches best estimates of acoustic levels from traditional calculation methods and qualitatively assesses the coherence characteristics of the trailing edge noise source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.