Abstract

We develop a stability and convergence theory for a class of highly indefinite elliptic boundary value problems (bvps) by considering the Helmholtz equation at high wavenumber k as our model problem. The key element in this theory is a novel k-explicit regularity theory for Helmholtz bvps that is based on decomposing the solution into two parts: the first part has the Sobolev regularity properties expected of second order elliptic PDEs but features k-independent regularity constants; the second part is an analytic function for which k-explicit bounds for all derivatives are given. This decomposition is worked out in detail for several types of bvps, namely, the Helmholtz equation in bounded smooth domains or convex polygonal domains with Robin boundary conditions and in exterior domains with Dirichlet boundary conditions. We present an error analysis for the classical $hp$-version of the finite element method ($hp$-FEM) where the dependence on the mesh width h, the approximation order p, and the wavenumber k is given explicitly. In particular, under the assumption that the solution operator for Helmholtz problems is polynomially bounded in k, it is shown that quasi optimality is obtained under the conditions that $kh/p$ is sufficiently small and the polynomial degree p is at least O(log k).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.