Abstract
Affine systems are reproducing systems of the form A C = { D c T k ψ ℓ : 1 ⩽ ℓ ⩽ L , k ∈ Z n , c ∈ C } , which arise by applying lattice translation operators T k to one or more generators ψ ℓ in L 2 ( R n ) , followed by the application of dilation operators D c , associated with a countable set C of invertible matrices. In the wavelet literature, C is usually taken to be the group consisting of all integer powers of a fixed expanding matrix. In this paper, we develop the properties of much more general systems, for which C = { c = a b : a ∈ A , b ∈ B } where A and B are not necessarily commuting matrix sets. C need not contain a single expanding matrix. Nonetheless, for many choices of A and B, there are wavelet systems with multiresolution properties very similar to those of classical dyadic wavelets. Typically, A expands or contracts only in certain directions, while B acts by volume-preserving maps in transverse directions. Then the resulting wavelets exhibit the geometric properties, e.g., directionality, elongated shapes, scales, oscillations, recently advocated by many authors for multidimensional signal and image processing applications. Our method is a systematic approach to the theory of affine-like systems yielding these and more general features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.