Abstract
The field of nonparametric function estimation has broadened its appeal in recent years with an array of new tools for statistical analysis. In particular, theoretical and applied research on the field of wavelets has had noticeable influence on statistical topics such as nonparametric regression, nonparametric density estimation, nonparametric discrimination and many other related topics. This is a survey article that attempts to synthetize a broad variety of work on wavelets in statistics and includes some recent developments in nonparametric curve estimation that have been omitted from review articles and books on the subject. After a short introduction to wavelet theory, wavelets are treated in the familiar context of estimation of «smooth» functions. Both «linear» and «nonlinear» wavelet estimation methods are discussed and cross-validation methods for choosing the smoothing parameters are addressed. Finally, some areas of related research are mentioned, such as hypothesis testing, model selection, hazard rate estimation for censored data, and nonparametric change-point problems. The closing section formulates some promising research directions relating to wavelets in statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.