Abstract

Anewwavelet-based geometric mesh compression algorithm was developed recently in the area of computer graphics by Khodakovsky, Schroder, and Sweldens in their interesting article [23]. The new wavelets used in [23] were designed from the Loop scheme by using ideas and methods of [26, 27], where orthogonal wavelets with exponential decay and pre-wavelets with compact support were constructed. The wavelets have the same smoothness order as that of the basis function of the Loop scheme around the regular vertices which has a continuous second derivative; the wavelets also have smaller supports than those wavelets obtained by constructions in [26, 27] or any other compactly supported biorthogonal wavelets derived from the Loop scheme (e.g., [11, 12]). Hence, the wavelets used in [23] have a good time frequency localization. This leads to a very efficient geometric mesh compression algorithm as proposed in [23]. As a result, the algorithm in [23] outperforms several available geometric mesh compression schemes used in the area of computer graphics. However, it remains open whether the shifts and dilations of the wavelets form a Riesz basis of L2(ℝ2). Riesz property plays an important role in any wavelet-based compression algorithm and is critical for the stability of any wavelet-based numerical algorithms. We confirm here that the shifts and dilations of the wavelets used in [23] for the regular mesh, as expected, do indeed form a Riesz basis of L2(ℝ2) by applying the more general theory established in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call