Abstract
The propagation speed of a shock or detonation wave in a shock or detonation tube is usually determined by a time-of-flight method by dividing the distance between two transducers with the propagation time of the disturbance signal. Some arbitrariness is inherent in determining the propagation time by this method. A new method based on Haar and Morlet wavelet transforms is reported. The method was applied to shock and detonation waves representing a step and a decaying spike discontinuity. The wavelet methods can be applied to the step discontinuity provided that the SNR ratio is good. The wavelet methods worked well for a decaying spike in the presence of noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.