Abstract
As a popular non-destructive test, acoustic emission (AE) has been widely used in many physical and engineering fields such as leak detection and pipeline inspection. Among those applied AE tests, a common problem is to extract the physical features of the ideal events, so as to detect similar signals. In acoustic signal processing, those features can be represented as joint time-frequency distribution. However, classical signal processing methods only give global information on time or frequency domain, while local information are lost. Although the short-time Fourier transform (STFT) is developed to analyze time and frequency details simultaneously, it can only achieve a limited precision. Wavelet Transform (WT) is a time-scale-frequency technique with adaptable precision, which does better features extraction and details detection. This paper is an application of wavelet transform in acoustic emission signal detection where strong noise exists. Developing for industrial applications, the techniques presented are both accurate and computationally implemental for embedded systems. In addition, STFT is compared with wavelets to show the advantages of wavelet transforms in this particular application field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.