Abstract

The spectral theory of pseudodifferential operators on ultrametric spaces of general form is investigated with the use of the analysis of ultrametric wavelets. Bases of ultrametric wavelets are constructed on ultrametric spaces of analytic type; it is proved that bases of ultrametric wavelets are bases of eigenvectors for the introduced pseudodifferential operators and the corresponding eigenvalues are calculated. A generalization of the Vladimirov operator of p-adic fractional derivation is introduced for general ultrametric spaces. Bibliography: 32 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.