Abstract

Face recognition has recently received significant attention (Zhao et al. 2003 and Jain et al. 2004). It plays an important role in many application areas, such as human-machine interaction, authentication and surveillance. However, the wide-range variations of human face, due to pose, illumination, and expression, result in a highly complex distribution and deteriorate the recognition performance. In addition, the problem of machine recognition of human faces continues to attract researchers from disciplines such as image processing, pattern recognition, neural networks, computer vision, computer graphics, and psychology. A general statement of the problem of machine recognition of faces can be formulated as follows: Given still or video images of a scene, identify or verify one or more persons in the scene using a stored database of faces. In identification problems, the input to the system is an unknown face, and the system reports back the determined identity from a database of known individuals, whereas in verification problems, the system needs to confirm or reject the claimed identity of the input face. The solution to the problem involves segmentation of faces (face detection) from cluttered scenes, feature extraction from the face regions, recognition or verification. Robust and reliable face representation is crucial for the effective performance of face recognition system and still a challenging problem. Feature extraction is realized through some linear or nonlinear transform of the data with subsequent feature selection for reducing the dimensionality of facial image so that the extracted feature is as representative as possible. Wavelets have been successfully used in image processing. Its ability to capture localized time-frequency information of image motivates its use for feature extraction. The decomposition of the data into different frequency ranges allows us to isolate the frequency components introduced by intrinsic deformations due to expression or extrinsic factors (like illumination) into certain subbands. Wavelet-based methods prune away these variable subbands, and focus on the subbands that contain the most relevant information to better represent the data. In this paper we give an overview of wavelet, multiresolution representation and wavelet packet for their use in face recognition technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call