Abstract

Ultra-high field 7T magnetic resonance imaging (MRI) scanners produce images with exceptional anatomical details, which can facilitate diagnosis and prognosis. However, 7T MRI scanners are often cost prohibitive and hence inaccessible. In this paper, we propose a novel wavelet-based semi-supervised adversarial learning framework to synthesize 7T MR images from their 3T counterparts. Unlike most learning methods that rely on supervision requiring a significant amount of 3T-7T paired data, our method applies a semi-supervised learning mechanism to leverage unpaired 3T and 7T MR images to learn the 3T-to-7T mapping when 3T-7T paired data are scarce. This is achieved via a cycle generative adversarial network that operates in the joint spatial-wavelet domain for the synthesis of multi-frequency details. Extensive experimental results show that our method achieves better performance than state-of-the-art methods trained using fully paired data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call