Abstract

Investigations of neural coding in many brain systems have focused on the role of spike rate and timing as two means of encoding information within a spike train. Recently, statistical pattern recognition methods, such as linear discriminant analysis (LDA), have emerged as a standard approach for examining neural codes. These methods work well when data sets are over-determined (i.e., there are more observations than predictor variables). But this is not always the case in many experimental data sets. One way to reduce the number of predictor variables is to preprocess data prior to classification. Here, a wavelet-based method is described for preprocessing spike trains. The method is based on the discriminant pursuit (DP) algorithm of Buckheit and Donoho [Proc. SPIE 2569 (1995) 540–51]. DP extracts a reduced set of features that are well localized in the time and frequency domains and that can be subsequently analyzed with statistical classifiers. DP is illustrated using neuronal spike trains recorded in the motor cortex of an awake, behaving rat [Laubach et al. Nature 405 (2000) 567–71]. In addition, simulated spike trains that differed only in the timing of spikes are used to show that DP outperforms another method for preprocessing spike trains, principal component analysis (PCA) [Richmond and Optican J. Neurophysiol. 57 (1987) 147–61].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.