Abstract

A wavelet-based method is proposed to effectively precondition 3D electromagnetic integral equations. The approximate-inverse preconditioner is constructed in the wavelet domain where both the moment matrix and its inverse exhibit sparse, multilevel finger structures. The inversion is carried out as a Frobenius-norm minimisation problem. Numerical results on a 3D cavity show that the iteration numbers are significantly reduced with the preconditioned system. The computational cost of the preconditioner is kept under O(NlogN).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.