Abstract

In this paper, a new algorithm for accurate optical flow estimation using discrete wavelet approximation is proposed. The proposed method takes advantages of the nature of wavelet theory, which can efficiently and accurately represent things, to model optical flow vectors and image related functions. Each flow vector and image function are represented by linear combinations of wavelet basis functions. From such wavelet-based approximation, the leading coefficients of these basis functions carry the global information of the approximated things. The proposed method can successfully convert the problem of minimizing a constraint function into that of solving a linear system of a quadratic and convex function of wavelet coefficients. Once all the corresponding coefficients are decided, the flow vectors can be determined accordingly. Experiments conducted on both synthetic and real image sequences show that our approach outperformed the existing methods in terms of accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.