Abstract

Performance of a contemporary two-dimensional face-recognition system has not been satisfied due to the variation in lighting. As a result, many works of solving illumination variation in face recognition have been carried out in past decades. Among them, the Illumination-Reflectance model is one of the generic models that is used to separate the individual reflectance and illumination components of an object. The illumination component can be removed by means of image-processing techniques to regain an intrinsic face feature, which is depicted by the reflectance component. We present a wavelet-based illumination invariant algorithm as a preprocessing technique for face recognition. On the basis of the multiresolution nature of wavelet analysis, we decompose both illumination and reflectance components from a face image in a systematic way. The illumination component wherein resides in the low-spatial-frequency subband can be eliminated efficiently. This technique works out very advantageously for achieving higher recognition performance on YaleB, CMU PIE, and FRGC face databases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call