Abstract
ABSTRACTWavelet analysis has been proved to be a powerful statistical technique in the non parametric regression. In this paper, we propose non linear wavelet-based estimators for multivariable mean regression function with long-memory data. We also provide an asymptotic expansion for the mean integrated squared error (MISE) of the function estimators. This MISE expansion still works even when the underlying mean regression function is only piecewise smooth. This paper extends the corresponding results in the literature for single variable to multivariable case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.