Abstract

Theoretical modeling of dynamic processes in chemical engineering often implies the numeric solution of one or more partial differential equations. The complexity of such problems is increased when the solutions exhibit sharp moving fronts. An efficient adaptive multiresolution numerical method is described for solving systems of partial differential equations. This method is based on multiresolution analysis and interpolating wavelets, that dynamically adapts the collocation grid so that higher resolution is automatically attributed to domain regions where sharp features are present. Space derivatives were computed in an irregular grid by cubic splines method. The effectiveness of the method is demonstrated with some relevant examples in a chemical engineering context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.