Abstract
The wavelet tree is a versatile data structure that serves a number of purposes, from string processing to geometry. It can be regarded as a device that represents a sequence, a reordering, or a grid of points. In addition, its space adapts to various entropy measures of the data it encodes, enabling compressed representations. New competitive solutions to a number of problems, based on wavelet trees, are appearing every year. In this survey we give an overview of wavelet trees and the surprising number of applications in which we have found them useful: basic and weighted point grids, sets of rectangles, strings, permutations, binary relations, graphs, inverted indexes, document retrieval indexes, full-text indexes, XML indexes, and general numeric sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.