Abstract

Structural health monitoring based on vibration measurements is a process that implements the instrumentation of sensors and methodologies to provide information regarding the condition of a structure, which allows the evaluation of the safety and integrity of structural systems. Because of this, in the past decades, several algorithms have been developed; among them, the wavelet transform is considered an efficient method for the elimination of the error contained in the acceleration recorded by the sensors. However, due to the complex nature of earthquakes and the particularity of the structural systems, the parameters used by the wavelet transform for error elimination in the seismic response are frequently variable. This paper proposes a method to get the seismic response of a base-isolated building subjected to ground-strong motions through numerical simulations of a mathematical model of the structure, using synthetic records based on historical seismic events occurring in Peru. In this way, the research found that the optimal intrinsic parameters of the building correspond to an approximate frequency interval of 0.20 to 6.25 Hz. Finally, the results show that this method is valid and can be reliably applied in structural health monitoring systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call