Abstract

We present a method of detecting and localising outliers in financial time series and other stochastic processes. The method checks the internal consistency of the scaling behaviour of the process within the paradigm of the multifractal spectrum. Deviation from the expected spectrum is interpreted as the potential presence of outliers. The detection part of the method is then supplemented by the localisation analysis part, using the local scaling properties of the time series. Localised outliers can then be removed one by one, with the possibility of dynamic verification of spectral properties. Both the multifractal spectrum formalism and the local scaling properties of the time series are implemented on the wavelet transform modulus maxima tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.