Abstract

This study focused on the classification of EEG signal. The study aims to make a classification with fast response and high-performance rate. Thus, it could be possible for real-time control applications as Brain-Computer Interface (BCI) systems. The feature vector is created by Wavelet transform and statistical calculations. It is trained and tested with a neural network. The db4 wavelet is used in the study. Pwelch, skewness, kurtosis, band power, median, standard deviation, min, max, energy, entropy are used to make the wavelet coefficients meaningful. The performance is achieved as 99.414% with the running time of 0.0209 seconds

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.